Adipose‐Derived Exosomes Exert Proatherogenic Effects by Regulating Macrophage Foam Cell Formation and Polarization
نویسندگان
چکیده
BACKGROUND Obesity is causally associated with atherosclerosis, and adipose tissue (AT)-derived exosomes may be implicated in the metabolic complications of obesity. However, the precise role of AT-exosomes in atherogenesis remains unclear. We herein aimed to assess the effect of AT-exosomes on macrophage foam cell formation and polarization and subsequent atherosclerosis development. METHODS AND RESULTS Four types of exosomes isolated from the supernatants of ex vivo subcutaneous AT and visceral AT (VAT) explants that were derived from wild-type mice and high-fat diet (HFD)-induced obese mice were effectively taken up by RAW264.7 macrophages. Both treatment with wild-type VAT exosomes and HFD-VAT exosomes, but not subcutaneous AT exosomes, markedly facilitated macrophage foam cell generation through the downregulation of ATP-binding cassette transporter (ABCA1 and ABCG1)-mediated cholesterol efflux. Decreased expression of liver X receptor-α was also observed. Among the 4 types of exosomes, only HFD-VAT exosomes significantly induced M1 phenotype transition and proinflammatory cytokine (tumor necrosis factor α and interleukin 6) secretion in RAW264.7 macrophages, which was accompanied by increased phosphorylation of NF-κB-p65 but not the cellular expression of NF-κB-p65 or IκB-α. Furthermore, systematic intravenous injection of HFD-VAT exosomes profoundly exacerbated atherosclerosis in hyperlipidemic apolipoprotein E-deficient mice, as indicated by the M1 marker (CD16/32 and inducible nitric oxide synthase)-positive areas and the Oil Red O/Sudan IV-stained area, without affecting the plasma lipid profile and body weight. CONCLUSIONS This study demonstrated a proatherosclerotic role for HFD-VAT exosomes, which is exerted by regulating macrophage foam cell formation and polarization, indicating a novel link between AT and atherosclerosis in the context of obesity.
منابع مشابه
The effect of cerebrospinal fluid-derived exosomes on neural differentiation of adipose mesenchymal stem cells in alginate hydrogel scaffold
Nowadays, researchers have made extensive efforts to find new treatments for nerve damage. Meanwhile, the role of exosomes in cell-cell communication is considered to be a new mechanism. Exosomes can act as suitable differentiating agents. The aim of this study was to investigate the differentiating effect of cerebrospinal fluid-derived exosomes on adipose mesenchymal stem cells in alginate hyd...
متن کاملCalcitriol modulates the effects of bone marrow-derived mesenchymal stem cells on macrophage functions
Objective(s):Some evidence showed that calcitriol has an important role in regulating growth and differentiation of mesenchymal stem cells (MSCs). However, the interaction between mesenchymal stem cells and macrophage is not clear yet. The current study was done to investigate the in vitro effects of calcitriol on the interactions between bone marrow-derived MSCs and rat macrophages. Material...
متن کاملThe TNF-like protein 1A-death receptor 3 pathway promotes macrophage foam cell formation in vitro.
TNF-like protein 1A (TL1A), a TNF superfamily cytokine that binds to death receptor 3 (DR3), is highly expressed in macrophage foam cell-rich regions of atherosclerotic plaques, although its role in foam cell formation has yet to be elucidated. We investigated whether TL1A can directly stimulate macrophage foam cell formation in both THP-1 and primary human monocyte-derived macrophages with the...
متن کاملInhibitory effect of Cinnamon on prevention of foam cell formation in platelet and monocytes co-culture
Introduction: Atherosclerosis is one of the leading causes of cardiovascular disease. Following endothelial damage and platelet aggregation in that area and the recruitment of monocytes and their conversion to macrophages, LDL gradually accumulates under the endothelial artery wall and gradually oxidized and convert to oxi-LDL. By swallowing it, the macrophages turn into foam cell and then athe...
متن کاملComparison of the effects of progesterone and 17 β-estradiol on Schwann cell markers expression in rat adipose-derived stem cells
Steroids promote the myelination and regeneration in the peripheral nervous system. Whereas, little is known about the inducing effects by which the hormones exert their effects on Schwann cells differentiation. This could be revealed by the expression of Schwann cell markers in adipose-derived stem cells (ADSCs). The purpose of this study was to present the effects of progesterone and 17 β-est...
متن کامل